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ABSTRACT

Many fields are interested in mapping and monitoring the sea floor
natural structure and biology, for environmental surveys, including
identifying macro waste or detection of submerged artifacts such as
cars, tyres, wrecks, and even military applications, e.g., to mine war-
fare whose detection depends heavily on the seabed structure. In this
paper, we propose a new active learning method to improve seabed
segmentation by deep learning. We perform segmentation of the
sea floor using two data sources, sonar, and bathymetry. We train
a network to fuse these two modalities and segment each sea floor
pixel into nine fine ecological classes, then into three gross class
sets, alive/not alive, and, in two different ways, whether mines can
be hunted for or not. Once this training is done, a second stage in-
volving a new active learning method based on network uncertainties
greatly improves the performance.

Index Terms— Deep learning, Active learning, Sea floor seg-
mentation, Sea floor biology, Multimodal fusion

1. INTRODUCTION

Semantic segmentation, i.e., the classification of an image at the
pixel level, is an extremely important task for many fields. This
task is often performed using deep neural networks. For example,
in remote sensing this type of approach is used for land cover map-
ping [1], or for land-cover change detection monitoring [2]. These
same techniques can be applied to seabed segmentation [3].

However, even though deep neural networks are very effective,
this task remains extremely complex. Current state-of-the-art meth-
ods typically require specific architectures and fine-tuning to achieve
high performance but still imperfect results. Moreover, the switch on
”real” data sets remains tedious due to various factors. For example,
the training and test data may be mismatched due to different ac-
quisition conditions, or due to different sensor calibration. Human
intervention may then be required.

One possible way to solve these problems is to add a human
in the loop to work in synergy with a learning algorithm. The role
of the human in this loop will then be to train, refine or adapt the
learning algorithm. This method is called interactive learning [4, 5].
However, including a human in he learning loop is unwieldy with
deep neural networks because they require a long time to converge.

A more appropriate strategy is active learning [6, 7]. The basic
idea is that the most informative data to improve the model are the
yet unlabeled cases for which its predictions are worst. These cases
are closely related to Shannon’s definition of information as expec-
tation. [8]. Thus the model points to cases to be added to the learning
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base, either by using the uncertainty of the responses [9], or an in-
dication of the representativeness of the resulting dataset [7, 10].

This paper has the following structure: Section 2 presents the re-
lated work, and Section 3 details our seabed segmentation approach.
Section 4 describes the method used to perform active learning, and
Quantitative and qualitative results including a discussion are given
in Section 6. Last, Section 7 concludes and mentions future work.

2. RELATED WORK

An experimenter in automated learning obviously builds a database
reflecting “as much as possible” that part of the world aimed at repre-
senting. This is of course open-ended and cannot be controlled as in
classical design of experiments [11, 12], although principles found in
stratified sampling are at least intuitively applied for ‘representative-
ness’ [13]. Note however that the pursued aim is determining: for a
poll, sampling should reflect the size of the classes; whereas to train
a classifier, it should balance the classes. On a freezed database,
basic model identification is termed passive learning. On complex
datasets, the experimenter cannot completely anticipate which data
are more informative. In (inter)active learning a human oracle keeps
interacting in the process at various stages.

An active learning algorithm includes an acquisition function,
based either on intrinsic uncertainty of prediction (low contrast in
the model itself) [14] or on an extrinsic diversity measure (contrast
within the dataset, expressed by adjunct estimators) [15], which are
used to request additional labels on examples. Both aim at pointing
what data is most relevant, in the terms of the model or additional
measures, not the eye of the experimenter.

Uncertainty-based methods can rely on simple criteria such as
entropy [16].When dealing with an ensemble of models, the authors
of [17] estimate the prediction confidence of the model using the
disagreement between the models in the ensemble.

Independently of uncertainty-based acquisition functions, meth-
ods to maximize information content when building the training
base [18] (or as mentioned, the contrast between samples), their
diversity or representativeness can be utilized to actively boost
learning by reducing the training set, by doing stratified sampling
in the candidate population. To this end, some authors use pre-
clustering [19, 20] to sample from each cluster and build learning
batches. Others use a representativeness measure built from a radial
basis function on observed frequencies, combined with an informa-
tiveness measure built from a best versus second best strategy [21].

Over the past decade, active learning has been deeply explored
in the field of remote sensing to train algorithms for animal detec-
tion [22], image classification [23], image segmentation [24] and
recently for change detection [25].

Our approach utilizes the intrinsic uncertainty of the network



(a) Display of 1 − P (cmax), uncertainty of network pre-
diction.

(b) Result of applying a smoothing kernel to wipe out
boundaries.
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Fig. 1: Choosing patches of uncertain prediction in test images for fine tuning the network by active learning. Figure 1a maps the uncertainty
of network predictions 1 − P (cmax) on a test image. Two different features stand out: the boundaries between classes as fine contrasted
lines, and large contiguous areas. Only the latter are informative of needing prediction improvement, because decisions on boundaries should
be divided. These boundaries are canceled by a smoothing kernel in Figure 1b, keeping clear, large zones of high uncertainty to focus for
improvement by active learning.

expressed by its softmax output to spot the particular areas needing
improved prediction.

3. SEABED SEGMENTATION

For the fusion of the the two modalities, sonar and bathymetry, we
used a cross fusion [26]. An illustration of this fusion is shown in
Figure 2. Taking the i-th pixel as an example, the fusion representa-
tion is then
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where the three components (each row of the matrix) of vi in Eq. 3
share the same to-be-learned parameters. In other words, they can be
also seen as three “new” different samples for the input of the next
layer to enforce a more compact fusion.

Before the cross fusion, each modality goes through 3 blocks of
two convolutions with a ReLU [27] activation followed by a batch
normalization [28] and an averaging pooling.

Once this fusion was done, we used a U-Net residual net-
work [29, 30] architecture. The encoder and decoder are each
composed of 50 convolutional layers. At the end of our decoder, we
have a branch composed of eight convolutional layers per task. This
network is trained in a multi-task way, i.e. all our tasks are learned
at the same time.

4. ACTIVE LEARNING METHOD

We were allowed to reuse data acquisitions made for different au-
thorities, with classifications meant for their specific purposes. The

classes, although reworked to be made homogeneous and apparently
consistent, proved inappropriate from the point of view of automated
learning. No less than three data labeling revisions were necessary
through interactions back and forth between the sonar and sea floor
specialists and the deep learning team. This was effectively a neces-
sary interactive learning, also building a common ground, a shared
context for mutual understanding of the two teams, and decisive for
the results. During the process, the inconsistent output of the net-
work signaled labeling inconsistencies to be revised.

There remained unavoidable gaps. For instance, Cymodocea of-
ten form thin, branched colonies which cannot be hand-labeled at the
pixel level, only by a reasonable convex envelope. In spite of this
gross, and partly erroneous indication, the network learnt to finely
outline Cymodocea, resulting in a humanly-judged better result than
what was given as “ground truth”.

As seen in Table 1, the classes are highly unbalanced, which
implied an appropriate stratified sampling as a first active step. Fur-
thermore, as can be seen in Figure 1, we have missing data. Indeed,
all the white areas of the image correspond to pixels for which we
have no sonar or bathymetry information, or which have no anno-
tation. Once an appropriate network architecture was found, with
satisfactory performance, we took an additional active step, which
again seeks to compensate for unbalanced classes:

• We select areas from the test images where the network gives
the predicted class with a low score, and pick there a small
area, say 100× 100 pixels.

• We dispatch these additional samples in the learning batches,
and fine tune the network (of course, removing these patches
from the test scores).

The predicted class is that of the highest value at the softmax
output of the network, numerically behaving like a probability,
P (cmax). When P (cmax) is low, the response is uncertain. Thus
the image resulting from 1−P (cmax), shown in Figure 1a, expresses
uncertainty. The boundary lines, where the network switches be-
tween classes are visible, as they should. We wipe them out by
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Fig. 2: Illustration of the cross fusion [26] used in our architecture.

applying a smoothing kernel, keeping only substantial areas of un-
certainty, in Figure 1b. To ensure that we select an area that will
allow the network to improve, the smoothing kernel ignores pixels
without information (white pixels). Thus, we make sure to avoid
taking an area of 100 by 100 pixels containing lots of pixels without
information that will not be used to refine the network. On this im-
age, we select the 100 × 100 sample of highest value for additional
active learning. Of course we could choose to select more than one
zone, and vary their sizes. We complete the fine tuning batch with
random samples from the training database.

5. EXPERIMENTAL PROTOCOL

5.1. Data

Our database is composed of 32 pairs of sonar and bathymetry
images. For each pair, we have four different annotations, de-
tailed in Table 1. The finest, “REAL” has 9 classes: Cymodocea,
Posidonia, Mat (a decimeter-thick slab formed by dead Posido-
nia rhizomes and sediment), Sediment, Rippled sediment, Gravel,
Rock, Riprap, and Anthropic (such as pipes and other pieces of
work). The 3 others gather these classes for specific purposes, into
two or three classes: “LiNl” (Living/Non-living), and for mine
warfare “HuNh” (Huntable/Non huntable) or “HoAnCo” (Homoge-
neous/Anisotropic/Complex). Many pixels are unlabeled, or lack
either sonar or bathymetry. They are set to NO-VALUE and masked
out for processing.
The images are of variable size, the smallest is 584×572 pixels, and
the largest is 9238× 15851 pixels, with an average of 2606× 3239.

5.2. Learning

Training settings. Training batches are composed of 10 patches
of size 512 × 512, sampled from the database by stratification to
compensate for unbalanced classes (see Section 4). We use the
Adam [31] optimizer with a learning rate of 1e−4. Training is
stopped after 200 epochs of 200 batches each.
Active learning settings. The batches for fine tuning keep 9 patches
as above from the learning base and one patch selected for low pre-
diction certainty on a test image, as described in section 4. In this
512 × 512 patch, only a 100 × 100 central square is annotated and
used for learning. Of course these central squares are masked out

Classes digram # Pixels
REAL:
Cymodocea Cy 11 226 658
Posidonia Po 128 337 503
Mat Ma 2 118 059
Sediment Se 145 111 715
Rippled sediment Rs 3 565 197
Gravel Gr 1 540 421
Rock Ro 5 056 930
Riprap Ri 2 941 621
Anthropic Ah 40 645
Living Li Cy Po Ma 141 682 220
Non-living Nl Se Rs Gr 158 256 529

Ro Ri Ah
Homogeonous Ho Se 145 111 715
Anisotropic An Rs 3 565 197
Complex Co Cy Po Ma Gr 151 261 837

Ro Ri Ah
Huntable Hu Se Rs Gr 159 903 570
Non-huntable Nh Cy Po Ma 140 035 179

Ro Ri Ah
NO-VALUE Nv 361 517 967

Table 1: Number of pixels for each class in our database.

of the images to establish the test results. We use the Adam [31]
optimizer with a learning rate of 1e−5. Training is stopped after
5 epochs, thus for each test image, the network checks the area on
which it is least confident five times.

6. EVALUATION OF OUR APPROACH

We used ensembles of three networks, on six cross-validation sets,
with results based on accuracy, balancing True Prediction (TP) and
False Prediction (FP): Accuracy = TP/(TP + FP).

Table 2 shows our baseline results on the four tasks. To evaluate
our ensembles, we removed from the test images the 100 × 100
squares that will be used to perform our active learning. Table 3
shows the results obtained after our active learning method.

As expected, Table 2 shows lowest accuracy values for the REAL
line, the most demanding task. The three other, simpler, classifica-
tion tasks reach naturally higher scores, probably because they some-
what present more balanced classes. The other main effect is the dis-



Table 2: Baseline results obtained with our ensembles of networks
on our six cross-validations.

aaaa
TaskExp CV1 CV2 CV3 CV4 CV5 CV6 Average

LiNl 86.17 94.46 93.06 90.62 93.13 96.49 92.32
HuNh 87.97 92.56 93.31 86.64 94.10 96.58 91.86

HoAnCo 88.20 92.51 93.36 86.94 94.22 96.57 91.97
REAL 75.24 91.47 90.33 83.87 86.34 95.82 87.18

Table 3: Results obtained after active learning with our network
ensembles on our six cross-validations, using a single additional
100× 100 annotated area picked from each test image.

aaaa
TaskExp CV1 CV2 CV3 CV4 CV5 CV6 Average

LiNl 94.80 97.17 95.92 95.39 96.67 97.34 96.22
HuNh 95.57 96.84 96.36 93.72 97.26 97.37 96.19

HoAnCo 95.64 96.84 96.35 93.69 97.30 97.37 96.20
REAL 90.65 96.46 94.85 93.69 94.92 97.06 94.44

crepancy between cross-validations, with CV1 and to a lesser extent
CV4 displaying lower accuracy scores. We attribute this to the com-
pound effect of highly unbalanced classes, and highly unbalanced
distribution of the classes among images in the database as well as
the lack of a more comprehensive data set. All these reasons can
lead to a mismatch between training and test data.

These effects are spectacularly compensated by picking just a
few areas of low prediction for active fine tuning, as shown in Ta-
ble 3: the first three task accuracies shoot up by 4%, leaping from
about 92% to 96%, and remarkably homogeneous results which tend
to confirm that learning suffers from a small image database with un-
balanced representation of sea floor environments.

The greatest improvement is for the full classification task, on
the REAL line, with an average rising by 7%, from 87% to 94%,
and again, perhaps more significantly, considerably leveling off the
differences between cross-validations.

We also investigated the effects of our approach on accuracy
by class. These results are presented in Table 4. As we can see,
our approach allows a gain on all the classes, with as expected a
higher gain on the less represented classes. Also, when a class is
represented in the selected area of 100× 100 pixels, its gain is more
significant, as for example the Mat class (Ma) gains 47%. However
even the under-represented classes also show a significant gain, for
example, the Anthropic class (Ah) gains 28%. We can therefore

Table 4: Comparison of accuracy per class between baseline and
active learning results.

Classes
Baseline
Acc %

Active
learning
Acc %

%Pixel
in training

% Label in active
learning area Gain

Cy 58.56 76.51 3.74 7.54 17.95
Po 92.88 93.24 42.79 24.87 0.36
Ma 7.17 54.31 0.71 15.63 47.15
Se 89.72 93.52 48.38 31.37 3.80
Rs 32.23 71.89 1.19 4.86 39.66
Gr 4.24 26.19 0.51 6.71 21.95
Ro 24.66 59.39 1.69 6.83 34.74
Ri 63.31 78.81 0.98 2.19 15.50
Ah 10.54 38.69 0.01 0.00 28.15

AVG 42.59 65.84 23.25

deduce that this allows a more efficient network generalization.
Finally, comparing the distribution of classes in the training and

selected active learning areas (Table 4), we notice that active learning
helps reduce even more the class imbalance.

Since the diversity of samples presented for training seemed at
stake, we experimented fine tuning by picking two 50 × 50 (non-
overlapping) areas instead of one 100 × 100. Table 5 compares the
results of the two strategies. Using two smaller samples for active
learning improves the three coarse classification tasks, but degrades
the accuracy on the full, REAL one.

Table 5: Comparison of fine tuning by active learning with one area
of 100× 100 pixels, or two areas of 50× 50 pixels.

aaaaa
ExpTask LiNl HuNh HoAnCo REAL

1 area 3.89 4.32 4.23 7.26
2 areas 3.96 4.45 4.38 7.05

The observed effect seem to indicate that losing 3/4 of additional
information on the highest uncertain zone is harmful to the REAL
classification, not compensated by having another sample some-
where else on the image. One substantial peak zone of uncertainty is
more effective for the REAL task, and appears necessary to tweak the
network in the direction of improvement. On the other hand, for the
three coarser classification tasks, pointing one decisive zone proves
less effective. This seems consistent with the REAL task being the
most significantly improved in Table 3. A fine analysis would be
needed to show whether the peak uncertainty area is actually not
informative regarding the corresponding coarse classes. At any rate,
the observed differences show that “maximizing information”, di-
versity or representativeness is not an easy concept to grasp; it is
highly dependent on the actual task, and it is therefore appropriate
to use the model itself —here, the network— to indicate where the
needed information seems to rest.

7. CONCLUSION

This paper presented a new active learning approach to significantly
improve performance. The main idea is to fine tune our networks
using a very small area of the test images. Areas where the network
is the least confident in its prediction are candidates to be the most
informative for fine tuning, and prove to greatly improve the results.

We performed two experiments. In the first one, we used a sin-
gle area of 100 × 100 pixels in each test image. In the second, we
extracted two areas of 50× 50 pixels. Whenever possible, these two
areas should not overlap. Our approach significantly improves the
performance.

Indeed, by using only a very small area of 100 × 100 pixels in
the test image (less than 0.12% when taking a medium size image),
we have a gain of more than 7% on the REAL task. Furthermore,
even though we relied on the output of the REAL task to select our
uncertainty areas, we improved all other tasks by 4%.
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