

Bureau d'études en Environnement Océanographie Acoustique

Cartographie & Suivi des cymodocées (cymodocea nodosa)

Historique des travaux de R&D de SEMANTIC TS 2008-2024 Travaux en cours : Projet CYZO - Sites N2000 : Cap Martin & Corniche Varoise

Claire NOEL Docteur & Ingénieur Directeur scientifique

Simon MARCHETTI Eric BAUER Jean-Marc TEMMOS

Clément LAHOUDE Loan MEGE

Michel COQUET

Bureau d'Études en Océanographie Acoustique

L'équipe de SEMANTIC TS des professionnels de la technique et de la mer...

SEMANTIC TS – Sanary (Var) Docteur-Ingénieurs Opérateurs sonars Pilotes et plongeurs PRO Modélisation... Traitement du signal... Instrumentation... Logiciels... Mesures in-situ ... depuis 1993

Les herbiers de cymodocées (Cymodocea nodosa)

Cymodocées

En Méditerranée, on recense 5 espèces de plantes marines (autrefois appelées phanérogammes et à présent nommées magnoliophytes) [Boudouresque et al. 2006]: Préservation et conservation de l'herbier à *Posidonia oceanica*. Accord RAMOGE, Monaco et GIS posidonie publ]. Outre les herbiers de posidonies, les herbiers présents dans les baies correspondent généralement à des herbiers à *Cymodocea nodosa* ou à *Zostera noltii* (magnoliophytes à feuilles plus étroites et plus courtes que celles de la posidonie).

Ces espèces sont des espèces protégées.

Identification Cymodocea nodosa - Feuille à bords dentelés Cymodocées (Cymodocea nodosa)
Feuille à bords lisses - Zostères (Zostera noltei)

Caractéristiques

Cycle saisonnier marqué

Fort taux de renouvellement des feuilles

Mort des plants est causée principalement par l'érosion

Peuvent survivre 4 ans sous 40 cm de sédiment

Sensibilité potentielle à de nombreux paramètres physico-chimiques et biologiques

- •Altération mécanique (chocs, frottements, écrasements et arrachages)
- courant
- •houle
- •topo-bathymétrie
- stocks sédimentaires
- •trait de côte
- •turbidité et paramètres associés
- Déchets posés sur le fond
- •qualité générale de l'eau
- •substances chimiques problématiques dans la colonne d'eau
- ·Les sédiments et le biote
- •flux à la mer (débit eau douce)

→ Dynamique de l'herbier : forte et complexe

Constats

Forte variabilité de l'herbier (densité, répartition géographique)

Manque d'observations - Méconnaissance générale

Absente avant ? Pas d'intérêt avant? Bassin versant mieux gérés ? Fonctionnalités ? Espèces ? Vitalité ?

Enjeux environnementaux

Dans un contexte de changement climatique... il serait souhaitable de prendre en considération les herbiers de Cymodocées et d'initier un suivi afin de disposer d'un état de référence, car même si leurs surfaces sont actuellement limitées,

- cette espèce thermophile est appelée à étendre son aire de répartition
- et pourrait fournir des services écosystémiques de même nature que ceux des herbiers de posidonies.

Extrait des recommandations sur la gestion et la surveillance des milieux marins de mars Conseil scientifique du comité de bassin Rhône Méditerranée Mars 2020 Concernant le sous-programme 3

« État écologique des habitats subtidaux côtiers de substrat meuble »)

→ Difficultés pour le suivi

Recommandations actuelles pour le suivi des cymodocées

Répartition de l'herbier

→ Approche surfacique : Cartographie

[Noël et al 2012] Cahier Technique du Gestionnaire : Analyse comparée des méthodes de surveillance des herbiers de posidonies. 96 p - CartOcean, Agence de l'eau RMC, Dreal PACA, Région PACA], CF pages 78 et 79

→ Approche linéaire : transects

→ Densité de faisceaux & longueurs des feuilles

GUIDE CADRE EVAL_IMPACT IMPACTS DES PROJETS D'ACTIVITÉS ET D'AMÉNAGEMENTS

EN MILIEU MARIN MÉDITERRANÉEN.
RECOMMANDATIONS DES SERVICES INSTRUCTEURS.

FASCICULE 4: SUIVI ENVIRONNEMENTAL

JUIN 2018

FICHE EH-6: HERBIER DE CYMODOCÉE

OBJECTIES DU SUIVI

Évaluer l'impact du projet sur l'herbier de cymodocée

PARAMÈTRES PHYSICO-CHIMIQUES ET BIOLOGIQUES AUXQUELS EST POTENTIELLEMENT SENSIBLE LA CYMODOCÉE

Altération mécanique (chocs, frottements, écrasements et arrachages), courant, houle, topo-bathymétrie, stocks sédimentaires, trait de côte, turbidité et paramètres associés, déchets posés sur le fond, qualité générale de l'eau, substances chimiques probiématiques dans la colonne d'eau, les sédiments et le biote, flux à la mer (débit au douce), espèces introduites.

L'herbier de cymodocée est principalement sensible à la présence d'eau douce dans le sous-sol marin, qui permet la germination des graines. Les infiltrations d'eau douce / modification des nappes phréatiques ont un impact potentiel important. Ce critère est important à prendre en compte dans le cas du choix de la zone témoin ou de la zone choisie pour mener une opération de transplantation.

ACTIVITÉS / AMÉNAGEMENTS POUR LESQUELS UN SUIVI DE L'ESPÈCE EST PRÉCONISÉ

L'ensemble des projets d'activité / aménagement dont l'aire d'études intègre cet habitat. La probabilité d'infiltration d'eau douce rend d'autant plus important ce suivi.

RÉGLEMENTATION

Réglementation	Remarques		
Arrêté ministériel du 19 juillet 1988	Il est interdit « de détruire, de colporter, de mettre en vente, de vendre ou d'acheter tout ou partie » de la plante.		
Convention de Berne du 19 septembre 1979	Annexe 1 de la convention		

PARAMÈTRES MESURÉS

Répartition de l'herbier de cymodocée (surfacique et linéaire), densité de faisceaux, longueurs des feuilles.

L'état de vitalité de l'herbier de cymodocée est peu étudié.

STRATÉGIE DE MESURES

- Période préférentielle : mesurer les paramètres en condition météorologique normale. La meilleure période est la fin du printemps.
- Fréquence : point zéro avant chantier et suivi en phase d'exploitation.
- Choix des stations de mesure : zone de projet et proximité.
- Durée du suivi: aménagements: T0 et T + 1 + 5 + 10 / activités: T0 et T + 1 + 5 + 10 + 15 (suivi tous les 5 ans le temps de la durée d'autorisation d'exploitation).

PROTOCOLE TERRAIN

Transects à mener de la limite supérieure à la limite inférieure de l'herbier.

Les méthodes surfaciques utilisées pour le suivi de l'herbier de posidonies peuvent également être utilisées (sona latéral). Se référer au guide CartOcean (Noël et al, 2012).

ANALYSE DES DONNÉES TERRAIN

Analyse cartographique, à comparer avec les données locales et les usages.

COÛT

2 plongeurs embarqués, soit un coût de 1 000 €, analyse des données compris.

SEUILS D'ALERTE EN LIEN AVEC LES ESPECES ET

- Contamination chimique de l'eau : seuils NQE (arrêté 27 juillet 2015) http://www.ineris.fr/ substances/fr/page/9
- Pressions physiques: https://inpn.mnhn.fr/ docs/sensibilite/SPN_2015_70_La_Riviere_ et_al_2016_Eval_sensibilite_Mediterranee_ Pressions_physiques.pdf
- Turbidité / lumière / sédimentation : pas de seuils. La cymodocée est plus résistante (dans une certaine mesure) aux apports de sédiments.

RÉSEAU DE SUIVI EXISTANT

Il n'existe pas de réseaux de suivi de l'herbier de cymodocée hormis sur certaines zones particulières (lagunes, etc.).

Constats

Ce protocole ponctuel n'est pas toujours adapté aux caractéristiques et à la dynamique de cette plante.

Figure 3 : Quadrat dans l'herbier de cymodocées pour la mesure de la densité Extrait d'un jeu de photographies géo-référencées recueillies par SEMANTIC TS

Cartographie & surveillance des herbiers de cymodocées

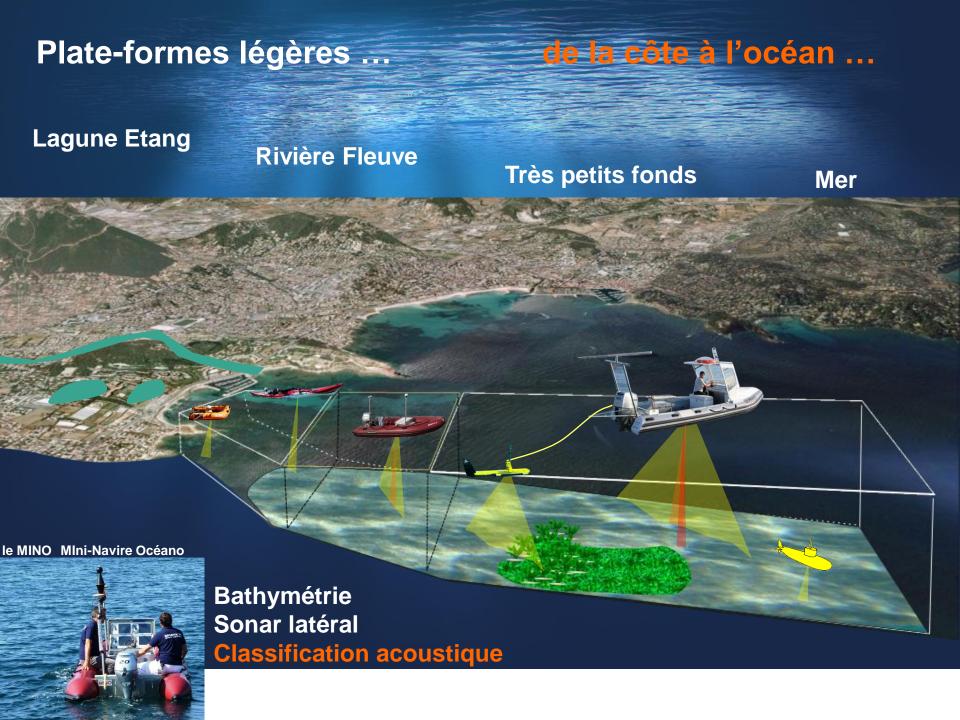
Historique des travaux de R&D de SEMANTIC TS depuis 2008

Bureau d'Études en Océanographie Acoustique

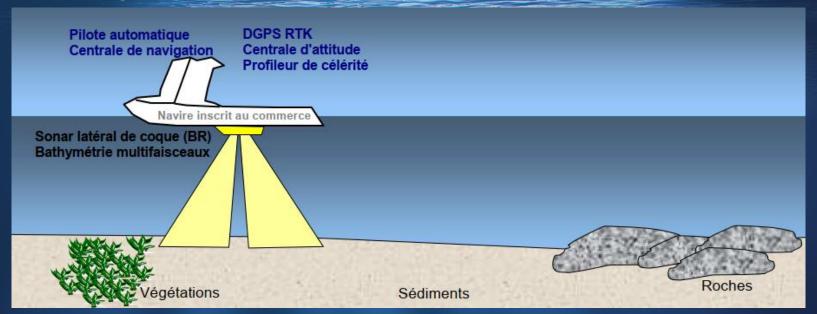
Utilise le son

(émission = actif) pour inférer le milieu marin.

Spécialisé en Acoustique Sous-marine et en Traitement du Signal


Expression d'un besoin commun de monitoring

Monitoring acoustique de l'environnement


Depuis 2001:

- 1. Développement & mise en œuvre
 - de techniques de monitoring des fonds aquatiques,
 - utilisant la fusion des données multi-capteurs
- 2. Design de plateformes légères de sondage

Monitoring acoustique de l'environnement

- Petites unités océanographiques dédiées
- Side scan sonar et interféromètre -> imagerie sonar et topographie fine

Plate-formes légères pour l'acquisition multi-capteurs

Mise au point d'un N. O. spécialement dédié aux sondages des fonds marins Mini Navire Océanographique

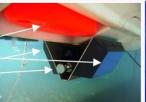
Principe de la fusion

Déploiement de sonars remorqués

Centrale Attitude :
2 GPS RTK

couplés à une
Centrale Inertielle

Centrale de navigation Centrale d'acquisition


Le SEMANTIC:

Navire de Charge 4° cat. Professionnelle Charge utile: 1000 kg Tirant d'eau: 30 cm Longueur: 6.40 m Moteur: 135 CV Puissance: 1kW (24/24)

Mono faisceau Simrad ES 60 Interféromètre Geoaswath+ Capteur célérité Valeport

Gabarit Routier Automobile

Positionnement dynamique précis du navire

→ Centrale d'attitude inertielle CODA Octopus couplée à 2 GPS RTK centimétriques

Utilisation de sonars de nouvelle génération → ping rate élevé → haute résolution

Principe de la fusion

Développement d'un logiciel « Chef d'orchestre » : son rôle : cadencer les mesures : acquisitions, communications, enregistrements

Développement d'un SIG spécifique intégrant

- le traitement des différentes données acoustiques
- le géo-référencement (même centrale d'attitude), avec même base-temps
- la fusion de leurs informations

Vérité terrain

Méthodologie pour le contrôle de la vérité terrain : vidéo quadra ou vidéo remorquée avec retour en temps réel

Dans ce projet nous contrôlons la vérité terrain selon le procédé de quadra-vidéo avec retour en surface explicité
sur la figure ci-dessous, développé spécifiquement pour des besoins similaires à ceux de cette étude.

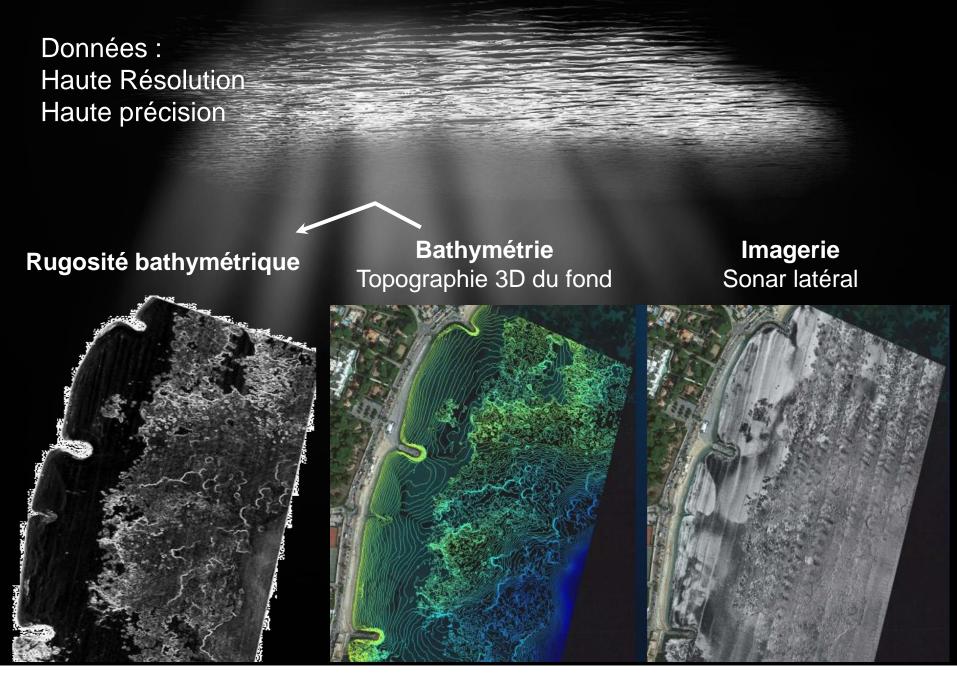


semantic 🦑

CYMO_Z12

semantic 纜

SEMANTIC 🠙


N43* 46' 40.5* E7* 30' 43.3*

CYMO Z3

N43" 46" 47.5" E7" 30" 43.6"

SEMANTIC 💏

Motifs bien observables au sonar latéral

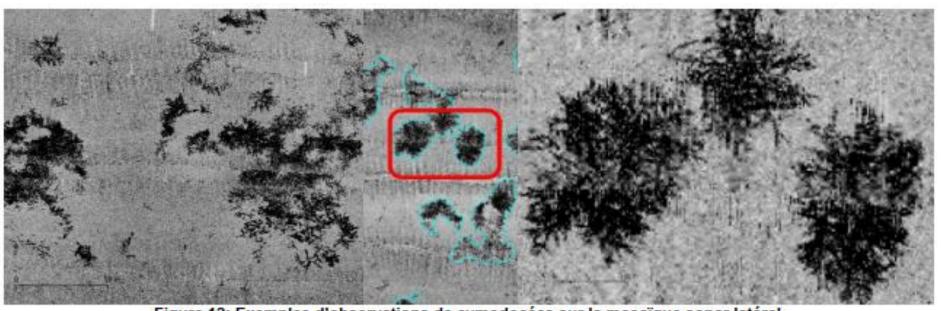
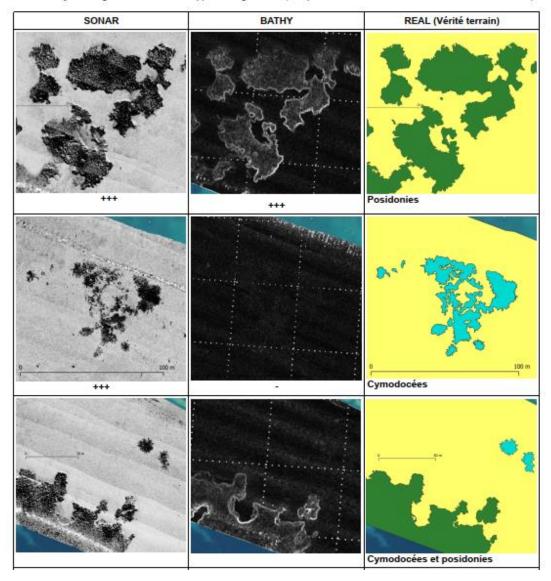
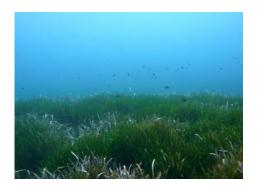




Figure 12: Exemples d'observations de cymodocées sur la mosaïque sonar latéral (La résolution de la mosaïque sonar latéral, c'est à dire la taille du pixel, est de 25 cm x 25 cm)

Analyse de signature à l'échelle d'apprentissage du RN (512 pixels de coté - Résolution 25 cm - # 128 m de coté)

R&D Cartographie des cymodocées

2000 - 2023 : Deep Learning

Projet RAPID-DGA ADELE Acoustic DEep LEarning

Système de détection de changement des fonds marins basé sur l'apprentissage profond des signaux acoustiques issus de multi-capteurs sonars

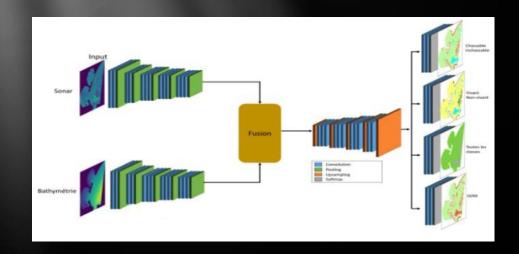
Objectif: meilleure segmentation des fonds marins

Lionel PIBRE Jérôme PASQUET

Classe / labellisation

9 classes d'habitat

Posidonie	0	
Enrochement	1	
Matte	2	
Anthropique	3	
Cymodocee	4	
Sediment	5	
Roche	6	
BlocGaletGravier	7	
SedimentRide	8	

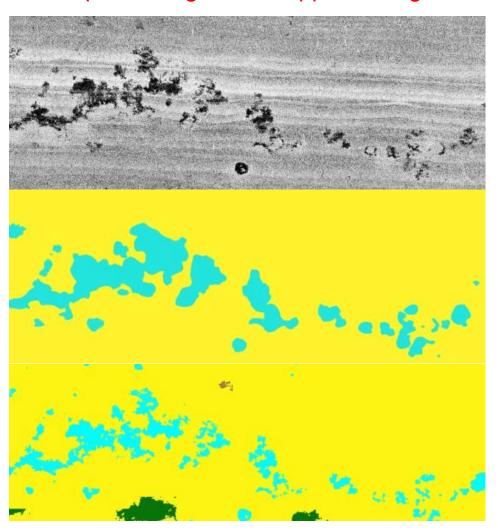


10 ans de données

DATE	NOM	TIF BATHY	TIF SONAR
2015	SteMaxime_Croisette	566.00m x 792.50m @ 0.25m x 0.25m	561.00m x 791.75m @ 0.25m x 0.25m
2015	SteMaxime_Garonette	463.50m x 477.00m @ 0.25m x 0.25m	463.50m x 474.25m @ 0.25m x 0.25m
2015	SteMaxime_Nartelle	945.00m x 1067.00m @ 0.25m x 0.25m	945.25m x 1067.25m @ 0.25m x 0.25m
2015	SteMaxime_StHilaire	290.00m x 227.50m @ 0.25m x 0.25m	289.75m x 226.75m @ 0.25m x 0.25m
2016	SteMaxime_NartelleSud	504.50m x 448.50m @ 0.25m x 0.25m	502.50m x 448.25m @ 0.25m x 0.25m
2016	SteMaxime_PortBaie	1324.50m x 630.50m @ 0.25m x 0.25m	1324.50m x 630.25m @ 0.25m x 0.25m
2017	BaiePampelonne_Herbiers	1503.00m x 2598.50m @ 0.25m x 0.25m	1488.75m x 2508.00m @ 0.25m x 0.25m
2017	Cannes_Croisette	1023.00m x 478.75m @ 0.25m x 0.25m	1022.75m x 478.50m @ 0.25m x 0.25m
2017	Cannes_DiguePort	840.75m x 466.50m @ 0.25m x 0.25m	841.00m x 467.00m @ 0.25m x 0.25m
2017	CotiChiavari_Portigliolo	509.75m x 469.75m @ 0.25m x 0.25m	508.75m x 469.00m @ 0.25m x 0.25m
2017	Hyeres_Bona	408.75m x 1004.50m @ 0.25m x 0.25m	408.50m x 1004.25m @ 0.25m x 0.25m
2017	Hyeres_Capte	210.00m x 546.25m @ 0.25m x 0.25m	209.75m x 546.25m @ 0.25m x 0.25m
2017	Hyeres_Gare	202.50m x 229.75m @ 0.25m x 0.25m	202.25m x 229.50m @ 0.25m x 0.25m
2017	Lecci_BaieSaintCyprien	531.50m x 1046.25m @ 0.25m x 0.25m	537.00m x 1046.50m @ 0.25m x 0.25m
2017	StRaphael_PlageVeillat	382.00m x 314.25m @ 0.25m x 0.25m	385.25m x 314.25m @ 0.25m x 0.25m
2017	StRaphael_PortSantaLucia	1074.50m x 1094.25m @ 0.25m x 0.25m	1054.00m x 1059.50m @ 0.25m x 0.25m
2018	Cannes_Croisette	1021.50m x 478.75m @ 0.25m x 0.25m	1021.50m x 478.75m @ 0.25m x 0.25m
2018	Menton_PlagesS1S2	1369.50m x 1286.00m @ 0.25m x 0.25m	1340.75m x 1246.25m @ 0.25m x 0.25m
2018	Menton_PlagesS3	501.50m x 560.50m @ 0.25m x 0.25m	480.00m x 608.00m @ 0.25m x 0.25m
2018	Roquebrune_Plages	643.50m x 1144.00m @ 0.25m x 0.25m	672.00m x 1184.00m @ 0.25m x 0.25m
2019	Hyeres_Bona	448.00m x 1088.00m @ 0.25m x 0.25m	448.00m x 1088.00m @ 0.25m x 0.25m
2019	Hyeres_Canalisation	4171.50m x 2653.00m @ 0.25m x 0.25m	4170.50m x 2653.00m @ 0.25m x 0.25m
2019	Hyeres_Capte	210.00m x 546.25m @ 0.25m x 0.25m	209.50m x 546.25m @ 0.25m x 0.25m
2019	Hyeres_Gare	200.00m x 226.25m @ 0.25m x 0.25m	199.50m x 226.00m @ 0.25m x 0.25m
2019	Marseille_ParcBalneairePrado	860.50m x 700.00m @ 0.25m x 0.25m	858.50m x 699.75m @ 0.25m x 0.25m
2019	SaintCyr_Emissaire	1165.50m x 923.00m @ 0.25m x 0.25m	1165.25m x 922.75m @ 0.25m x 0.25m
2019	SaintLaurent_Port	1735.50m x 698.00m @ 0.25m x 0.25m	1735.00m x 697.50m @ 0.25m x 0.25m
2019	StTropez_Cimetiere	189.75m x 249.25m @ 0.25m x 0.25m	167.50m x 199.00m @ 0.25m x 0.25m
2019	Theoules_ParcMarin	2624.00m x 4032.00m @ 0.50m x 0.50m	2624.00m x 4000.00m @ 0.25m x 0.25m
2019	Theoules_Port	303.25m x 191.75m @ 0.25m x 0.25m	301.50m x 191.75m @ 0.25m x 0.25m
2020	Hyeres_LittoralCeinturon	985.50m x 1417.50m @ 0.25m x 0.25m	643.00m x 835.25m @ 0.25m x 0.25m
2020	LaSeyne_BaieSablette	False	525.75m x 1547.50m @ 0.25m x 0.25m

Projet ADELE Développement d'un modèle neuronal pour la segmentation (SERENADE 2022)

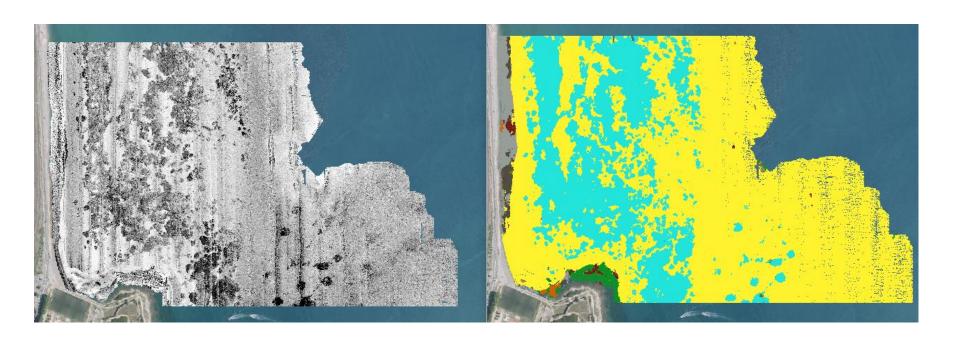
11 millions de pixels labellisés


(de 25 cm de coté) d'herbiers de cymodocées

CLASSES	#PIXELS
Posidonie	128,337,503
Enrochement	2,941,621
Matte	2,118,059
Anthropique	40,645
Cymodocee	11,226,658
Sediment	145,111,715

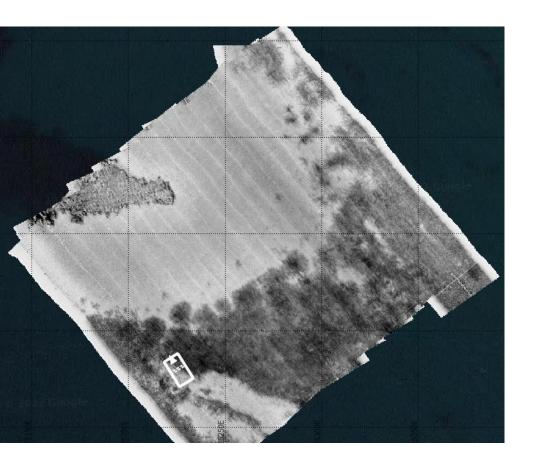
Cartographie – Suivi des cymodocées

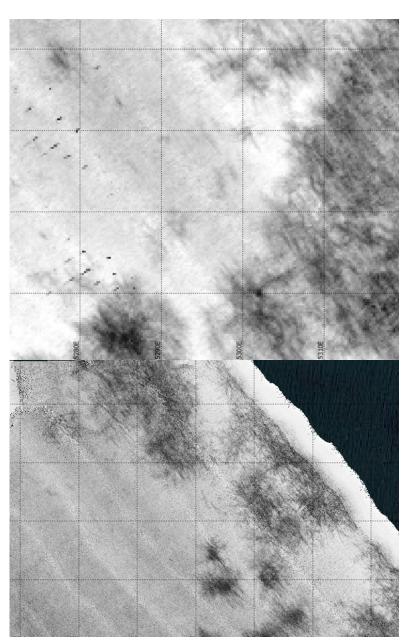
Deep Learning Base d'apprentissage


Très bons résultats sur la cymodocée :

- -> Le RN segmente mieux que manuellement
- -> fort potentiel du RN

Résultats IA - 2024


Workshop SERENADE - 10-13 Juin 2024 - Toulon SEATECH - ENSTA Bretagne



R&D Cartographie – Suivi des cymodocées

Nouveaux essais sonars 2022 - 2025

Cartographie par drone aérien en petits fonds

Acquisition d'une orthographie par drone aérien Exemples de résultats sur les herbiers mixtes de zostères-cymodocées

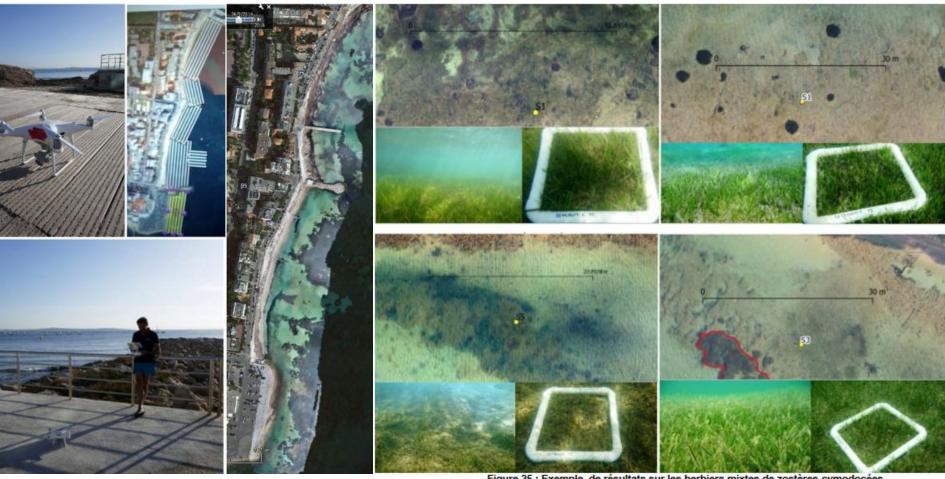


Figure 25 : Exemple de résultats sur les herbiers mixtes de zostères-cymodocées Images aériennes et images sous-marines A gauche : Septembre – A droite : Avril

Observations sous-marines 2015 - 2025 (plongée géoréférencée)

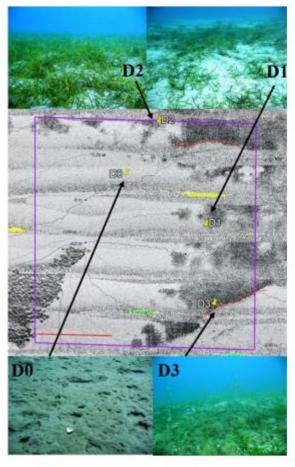


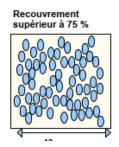
Figure 58 : Leg 2 : Repérage terrain (04/09/2022) CR Plongée du 04/09/2022

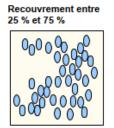
D0 Densité de faisceaux nulle D1 Longueur des feuilles = 25-30 cm

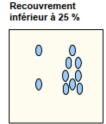
D2 L = 30-35 cm

Rhizome dressé 40 à 50 cm.

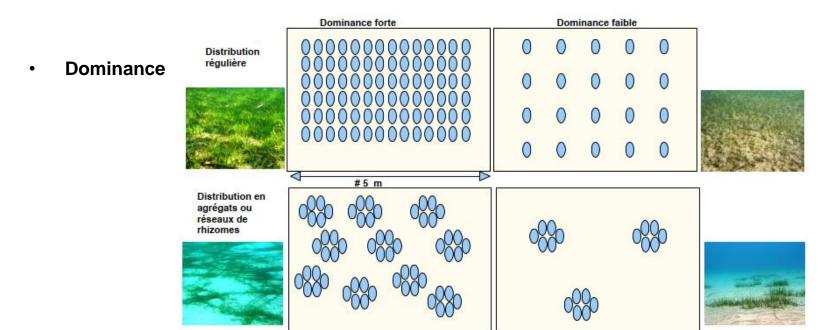
Beaucoup d'aloues photophiles. Densité plus forte qu'en [



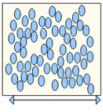

Etude de paramètres de caractérisation

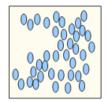

Différent de la posidonie

Méthodes de caractérisation des forêts en terrestre ?


Recouvrement

Régularité



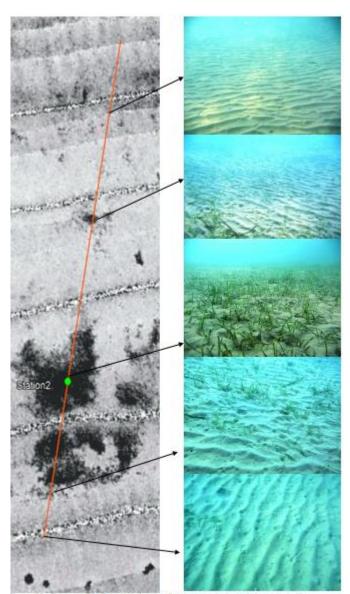

Etude / paramètres de caractérisation

Recouvrement Densité?

Recouvrement supérieur à 75 %

Recouvrement entre 25 % et 75 %

Recouvrement inférieur à 25 %



Cartographie – Suivi des cymodocées


Exemple de résultats – Menton 2021

igure 28 : Transect T2 :Extrait de la mosaïque sonar et observations associées

V.4) Observations sur les stations Station N°1

igure 30 : Station S1 : Localisation et observations associées

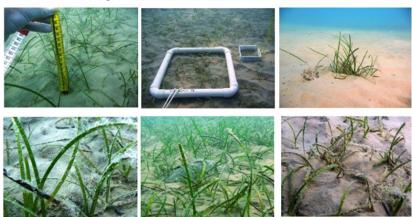


Figure 36 : Mesure de la longueur des feuilles et de la densité Observation des épiphytes et du faible broutage

Les valeurs mesurées de la densité dans le quadra 30 cm x 30 cm et la longueur de la plus grande feuille adulte sont données dans le tableau suivant, ainsi qu'une image représentative de l'herbier observé.

	S1	S2	S3	S4	S 5
Longueur	15.5	14.3	14.7	16.7	11.9
E.T.	3.4	2.8	4.4	2.1	2.9
Densité	178	322	196	222	196
E.T.	11	236	57	56	74
Epiphytes	+	++	++	+	+
Broutage	-	-	-	-	-

Conclusions : constats de SEMANTIC TS

- Méthodes de cartographie développées & opérationnelles
- Besoin de connaissances : typologies d'herbier
- Suivi : compliqué / dynamique et variété de typologies

Projet CYZO Agence de l'eau RMC

2023 : Définition de l'étude Automne 2024 : Début de l'étude Éléments de Recommandations pour Cartographie & Perspectives de Surveillance Cymodocées – Zostères

Travaux:

Compiler l'existant : R/D & Observations (Travaux internes depuis 2008) + Bibliographie

Poursuite des travaux de recherche et de mise au point de méthodes de suivi adaptées

- •aux caractéristiques des zones d'étude (profondeur, étendue)
- •à la morphologie et la dynamique de ces herbiers.

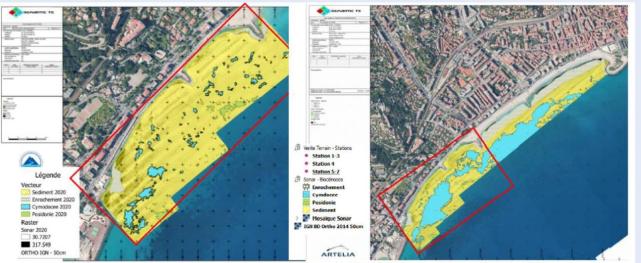
En parallèle, tester sur le terrain, en opportunité l'applicabilité des méthodes les plus pertinentes

Analyse des résultats des essais de méthodologies in-situ

→ fournir des éléments de recommandations

FR9301995 – Site Natura 2000 'Cap Martin' CARF - SMIAGE

Etudes préliminaires : 2018 - 2020 - 2021


Site Natura 2000 FR9301995 « Cap Martin »

2 - Présentation des études et suivis en cours

CRÉATION D'UN PROTOCOLE DE SUIVI DE L'HERBIER DE CYMODOCÉE

- ✓ Suivi interannuel (2018, 2020, 2021): Evolution de la répartition spatiale importante sur le site
- ✓ 1 ere caractérisation qualitative de l'habitat : quadra, transect permanent ...
- ✓ A creuser: recouvrement, facteurs d'évolution, patch sources

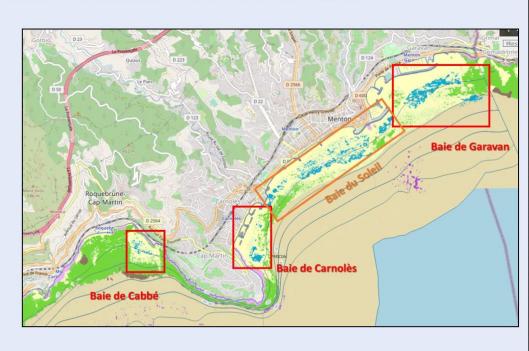
	51	52	53	54	55
Longueur	15.5	14.3	14.7	16.7	11.9
E.T.	3.4	2.8	4.4	2.1	2.9
Densité	178	322	196	222	196
E.T.	11	236	57	56	74
Epiphytes	+	++	++	+	+
Broutage		•	•	(*)	

Figure 23 : Cartographie des biocénoses réalisée en novembre 2020 (A gauche) et en mai 2018 (A droite)

FR9301995 – Site Natura 2000 'Cap Martin' CARF - SMIAGE

2023 : Définition de l'étude

Site Natura 2000 FR9301995 « Cap Martin »



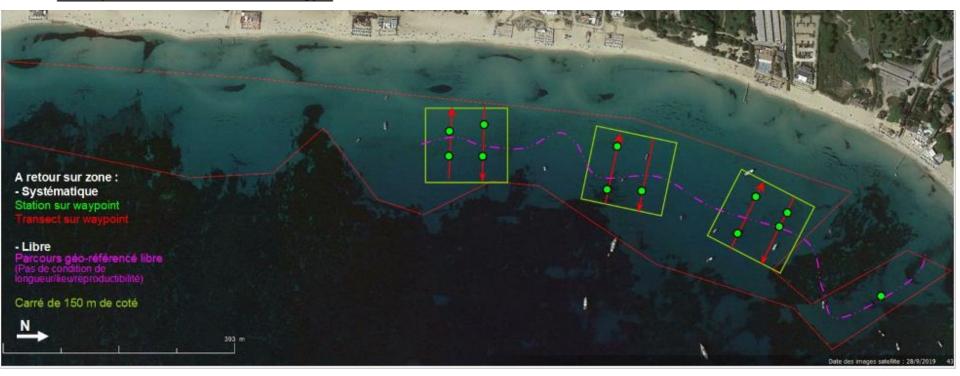
2 - Présentation des études et suivis en cours

CRÉATION D'UN PROTOCOLE DE SUIVI DE L'HERBIER DE CYMODOCÉE

Objectifs:

- ✓ Compléter l'état initial de l'habitat pour le site Cap Martin
- ✓ Accroître les connaissances sur l'état de conservation de l'habitat « Cymodocée » (distribution spatiale et temporelle)
- ✓ Assurer le suivi des espèces/habitats sur le long terme
- Etapes
- ✓ Analyse différentielle des cartographies existantes
- √ Etude des données sonar pour le recouvrement
- ✓ Proposition d'un protocole pour les suivis in situ
- ✓ Campagne N°1 (Mai 2024) : Cartographie & Plongées d'observations herbiers
- ✓ Campagne N°2 (Nov 2024)
- ✓ Campagne N°3 : à venir
- √ Analyse et MAJ du protocole

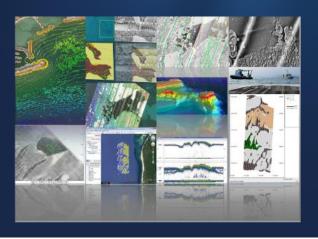
FR9301624 – Site Natura 2000 'Corniche Varoise' Communauté de Communes du Golfe de Saint-Tropez



FR9301624 – Corniche Varoise

2025 : Démarrage des travaux

- Disponibilité de Lever sonar latéral récent (Novembre 2024)
- Analyse données sonar : Étude amont des données géophysiques et des caractéristiques spécifiques de la zone.
- Proposition d'un plan d'échantillonnage & Version 1 du protocole d'observations et de suivi
- RUN Annuel 1 : Réalisation de 4 missions saisonnales (1 mission par saison) d'observations subaquatiques
 - Plongeurs professionnels. Spécialistes herbier cymodocées et habitats méditerranéens Descriptif d'une mission saisonnale type :



Merci de votre attention!

SEMANTIC TS

Bureau d'Études en Océanographie Acoustique

